Self-Assembled Plasmonic Nanoparticle Clusters

(In addition to MRI and medical physics, it’s worth keeping an open mind and keeping tabs on various other branches of physics and science. To that end, I’ll highlight interesting papers or research that strikes my fancy from time to time.)

Eric Berger aka SciGuy, a science columnist at the Houston Chronicle, points to a new paper in Science that introduces new “metamaterials” which can manipulate light, which are easy to fabricate (in principle). Eric makes the analogy to this being as much a game-changer as lasers were when they were invented almost exactly 50 years ago.

Here’s the abstract of the paper:

Self-Assembled Plasmonic Nanoparticle Clusters

The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.

and here’s a link to the full text of the article. As with lasers when they were first introduced, it’s a challenge to the imagination to envision how this might be used or applied. What possible medical imaging applications could this be exploited for? That’s the billion dollar question 🙂